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Statistically Thinned Arrays with
Quantized Amplitude Weights

1. INTRODUCTION

Skolnik, et all, and others 2 .3 have investigated the use of statistically designed density tapers to
control antenna pattern sidelobes. In the procedure described by Skolnik. all of the elements of the
array were excited with the same weights and the density of elements was made proportional to the
amplitude of the aperture illumination of a conventional "filled" array. The resulting ensemble-
averaged power pattern was shown to be equal to the sum of the filled array pattern and a distribution
that was not angle-dependent, and which represented an average sidelobe level. A recent paper by
Numazaki, et a14 combines statistical thinning with a deterministic procedure to achieve improved
patterns in pre-selected angular planes (the principal orthogonal planes and the diagonal planes).
The authors also extended thcir procedure to address multiple quantized weights. The present work
also addresses thinned arrays with multiple quantized weights, but is primarily concerned with

(Received for Publication 11 January 1990)
1. Skolnik, M., Sherman Ill. J.W.. and Ogg. Jr., F.C. (1964) Statistically Designed Density - Tapered

Arrays. IEEE Trans. Antennas Propagat. AP-12:408-411.
,, 2. Lo. Y.T., (1964) A Mathematical Theory of Antenna Arrays with Randomly Spaced Elements.

IEEE Trans. Antennas Propagat. AP-12:257-268.
3. Steinberg, B.D. (1972) The Peak Sidelobe of the Phased Array Having Randomly Located

Elements, IEEE Trans. Antennas Pronaqat. AP-20(No. 2).
4. Numazaki. T., Mano, S., Kategi, T., and Mtzusawa, M. (1987) An Improved Thinning Method for

Density Tapering of Planar Array Antennas, IEEE Trans. Antennas Propagat. AP-35
No. 9): 1066-1069.
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evaluating the ensemble-average array parameters for several quantizing algorithms. This study was

motivated by the fact that if array amplitude weights are applied by solid state modules, then it is

often practical and more economical to select modules with a small number of discrete, or quantized.

amplitude levels, and to organize the array into annular rings with the quantized levels. Since an

array with quantized amplitudes may produce high sidelobes, the goal of this study was to use

statistical thinning to smooth the average amplitude illumination and reduce peak sidelobe levels.

The changes in average sidelobe level gain and effective isotropic radiated power due to this design

procedure were then evaluated.

2. METHODS OF STATISTICAL THINNING AND QUANTIZING

Several design procedures will be discussed that require an "Ideal" continuous distribution as a

starting point to synthesize the desired arrays. Figure la shows a representation of a continuous

amplitude distribution that will be considered an ideal illumination designed to produce a low
sidelobe pattern circular aperture. Throughout this report the aperture distribution will be

represented by the circular Taylor patterns. 5 The circular aperture illumination will be sampled by a

rectangular grid array (Figure lc) with elements located 0.5X apart, as done in the earlier Skolnik

study. Figure lb shows a step-wise continuous aperture distribution composed of three levels that

define the set of available weights. By proper selection of the levels, which we refer to as amplitude or

weight quantizations, and applying one of the three thinning procedures described below, one can

approximate the ideal aperture illumination (An) and achieve low sidelobe average radiation patterns.

Throughout much of this analysis we shall use Skolnik's notation, and denote aperture sums as one-

dimensional sums over the index n while understanding this as a shorthand for the conventional two

dimensional array summations.

The three thinning methods used in this study are depicted in Figure 2. The ideal aperture taper,

indicated dashed, is approximated either by omitting elements entirely (thinning) or by selecting

weight values from several discrete amplitude levels in accordance with statistical rules to be

described. Following Skolnik, 'he mathematical treatment will include not only the important case

called "Natural Thinning", in which the aperture element density varies from unity (filled) to low

(sparsely filled) in an attempt to approximate the desired weighting, but will also consider thtnnirg

beyond this "natural' range. The density of elements is thus scaled by a constant k < 1 such that the

probability of any element being excited can be < k (instead of unity) while the ideal aperture

distribution remains proportional to the naturally thinned case (k = 1). Throughout this report, the

analysis will account for k 5 1. but the examples will be restricted to natural thinning.

5. Taylor. T.T. (1960) Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes, IRE
Trans. AP-8:23-26.
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A. ARRAY AMPLITUDE TAPER A(x,y)

B. QUANTIZED AMPLITUDE TAPER

0 y

AQQA AP;=PT1tRE AND COORDINATES

Figure 1. Array Amplitude Taper
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2.1 Description of Methods

2.1 1 METHOD 1

Method 1 of Figure 2a shows the simplest combination of thinning with amplitude quantization:
Discrete weights VP are chosen, always above the ideal illumination envelope. (except at the origin)

and sources are either left "on" or turned completely "off' in accordance with an algorithm that makes
the azimuthally averaged amplitude at any radial position nearly that of the taper. The probability of
assigning the weight Fn = Vp to an element at location p, in the radial annulus pp-5 - p: Pp is given by:

P (Fn = Vp) = kAn/Vp (1)

where An is the amplitude of the ideal illumination at the nth element. The probability of turning the

element off is [k-P(V )]. The figure indicates that some elements are left on at the value Vp while

others are set to zero. In terms of a distribution around some annular ring of elements, the above
result also indicates that the average of the weights around a large ring of elements will also be given
by kAn/V p . Ir. principle, there can be many discrete levels, although in practice some small number
will be chosen.

2.1.2 METHOD 2

Ir Method 2. the staircase of discrete levels is again kept above, orjust touching the ideal

envelope An.but in this case the average level for a ring of sources is attained by also exciting some
fraction of elements with the next lower level of amplitude. Since the next discrete level is also

available to a solid state module, it would seem reasonable to take advantage of this added degree of
freedom instead of restricting oneself to the on-off devices in Method 1. For Method 2, whether

considered from an average over an ensemble of arrays, or counted from the annulus of a large array.
if there are M 2 elements at the level Vp. MI elements at the next lower level Vp.I and still others
missing or turned off, then for the average level to be An.one requires:

M2 M1A (2)
MI + M 2 Vp+M + M2 P+ l  n

Since the total excitation probability is k, to account for generalized thinning,

P(Fn = Vp) + P(F n = Vp+ l ) = k. (3)

We associate the probability of exciting elements at levels Vp and Vp+ , respectively, with

P (Fn = Vp) = k jM2  - 1n= +, =k -M (4)
+ M 2  M 2

Solving for the probabilities yields
- A-V~ [Vp- An]

P(F[AVn) V p+] P(F Vp+1) kI p -V (5)VPVp1.P(Fn = Vp0 = k Vp - Vp +In

The sketch illustrating Method 3 looks quite different from that of Method 2, but in fact the only

geometrical difference is in the selection of radii pp. In Method 3. the staircase of discrete levels is not

kept above the envelope, but is roughly half below and half above the taper at A(pp). If a particular pp is

5



selected, the step height is chosen so that it is bisected by the A (pp). that is, A (pp) = 1/2 (Vp + Vp+1). This

choice is arbitrary and can lead to inferior results for cases with very few steps, as will be discussed m
Section 4.4. Method 3 must contend with current sources in circles or annuli for which An lies either

above the bisected staircase or below it. The consequence is that two sets of probability densities are
needed to implement the method, as will now be discussed.

2.1.3 METHOD 3

In Figure 3, a section of the Method 3 configuration has been expanded. Sources at grid locations

denoted by n I and n2 are displayed. The value of the weight at n1 . n 2 , namely, Fn 12 are allowed to t +I
either of two values:

F11 I = Vp or Vp+I: Fn 2 = V p- I or VP (6)

The probabilities for Fn assuming one of the two values are defined below by the "relative" closeness of

An to a level, (See Figure 3)

Region (1) Step above taper

[Ani - VP+1 (P(Fni=Vp) = k  Vp V P(Fn =Vp+)k -P(Fn1Vp)

Region (II) Step below taper
1_ - An2J

P(Fn2 = Vp) = k [-Vp-' P(Fn2 =Vp_ 1)=k-P(Fn2 =Vp) (8)

Vp.

lp- I p

"" D EMEAL TAPER

ARRAY
AMPLITUDE VPTAPER

p n2  n, p
P -1 P

Figure 3. Expanded View of Method 3 Geometry
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Intuitively, as An approaches Vp, the probability should increase that the weight Fnt at the source
location pn assumes the value V1,. Thus, drawing a uniformly di3tributed random variate (rv) from a

pseudo-random-number generator producing samples over 0 < rv S k lets one decide on the value given
to F. F or example, suppose a source element is located at pn2, a pL sition where the taper amplitude

exceeds the level value (in this case Vp). If. say P(Fn2 = V) = 0.85 one would set Fn2 = Vp. I for rv . 0.85.

Using the probability formulas for Methods 1 and 2, respectively, cne can decide in a similar fashion
whether to set F n = VP or 0 and Fn = Vp or Vp + 1. The thinning algorithms for all three methods were

constructed using this design philosophy.

2.2 Average Power Patterns of Thinned, Quantized Arrays

If the ideal aperture taper of Figure 1 were sampled periodically, and radiated from a filled.

periodic array, the sampled values An would radiate to produce the far field pattern

N
Eo(0,cp) = Y Anexp(jp n) (9)

n=1

where the bn(O,€) is the phase factor as detailed in Section 4. In the case of the new array with a finite

set of amplitudes and the source configuration subjected to statistical thinning, the field intensity

pattern is written:

N
E(0, ) =Y F, exp(JO n ) (10)

n=1

where the Fn are selected randomly in accord with the previously described rules.

Ensemble averaging the field Intensity, E(0,0), from many thinned arrays leads one to set

Fn = kAn (11)

in order to have

E(0,0) = kE o (0.)) (12)

For large arrays, we assume that the azimuthal sample average of the Fn is nearly the same as the

ensemble average, namely that

< Fn > = F'n = kA, . (13)

For the purpose of deriving averaged expressions, the ensemble average is more convenient to invoke.

The mean value of the field strength is thus given by

N N
E(0,4) = Y Fn exp(jb n ) = . F nexp(jd n ) (14)

n=i n=1

= kEo(0,))

which is the pattern of the ideal, filled array.

7



The power pattern is the absolute square of the field intensity pattern. Following Skolnik, the

power pattern is:

I E(0,0)I 2 = E(O, ) E*(O,) (15)

= ZZ FmFnexp U ((m - n)]

and

IE(0,0)12 = ZFn 2 + Z fmf e x p j(( nm - (1 n)In m n

is its expected value for real Fn . The m = n index is separated out to invoke the theorem from statistics
which states that for statistically independent random variables, the mean of a product is the product

of the means.

2.2.1 METHOD 1

At this point the analysis departs from that of Skolnik to address the specific algorithms under

study. First, it is convenient to break up the sums over n into groups that correspond to the discrete
levels. Thus, a sum over n for the entire array is written as a double sum over the elements at all P
levels, with the index n varying between Np-1 and Np in the pth level (that level between PP-I and Pp):

NT P

I :-- Y E (16)
,= 1 p= 1 n(p)

The Quantities Fn can assume either of two values, VP or 0. for n in the region NP_ < n < Np. Using

the definition for the mth moment of a discrete probability density function (PDF),

X m = Z X m P [x = x], (17)

one gets from Eq. (1)

Fn 2 =Vp2 (kAn/V p ) + 0 (18)

for i = 1 and 2, leading to

Z Fn2 = k EV, ZAn . (19)
n nip)

The second term of Eq. (15) is evaluated below using the theorem concerning the mean of the product of

statistically independent variables.

Z Z FmFn exp IJ (am - 4 n)1 (20)
In *n

E E (Fm Fn exp [J ((D m - (1 n)]
in tn

Using Eq. (13), this becomes

8



m E k2AmA n exp U (0m - On)] (21)m nm~en

= k 2 1 E0 (0,])12 - k 2 g (An) 2

n

Combining both sums to produce the average power result leads to:

I E(O,.) 12= k 2 1E o (.)l 2 + ZVp 1: kA , (1- kAn/VP )

p n (p)

= k 2 IE0 (O,4)1 2 + PSL (22)

where

P.,= EVp EnI kA n ( 1 - kA n/Vp).

The expression is similar to Skolnik's result in that it has two terms: the first is the power pattern of
the ideal filled array, and the second is a constant or uniform level independent of the angle variables
0 and ¢. It is a generalization of Skolnik's result, and reduces exactly to it if there is only a single level
Vo and not a set of discrete levels. Quantitative results from the method will be discussed in a later
section.

2.2.2 METHOD 2

2Using the probabilities given in Eq. (5), we have from the moment formula for Fn:

(F)2= (VP) 2 k[A. -VP+j +[V -V,~) (23)

p p+ + - VPA. 1

Summing over all n. and using the double sum notation described for method 1, we arrive at

Np
Z(Fn)2 = kZ 1 [An (Vp + Vp+ 1) - VP VP+1l. (24)

The second term of the average power pattern is again given by Eq. (21), as can also be verified by
inserting the expression for Fn into this term and using the probability formulas (Eq. 5) for Method 2.

Collecting terms, we get the final result:

I E(O.q) 12= k 2 Eo(0.)2_ Zk2(An)2
n

Np
+ k E Y [A n (Vp + Vp+I ) - Vp Vp+1 J" (25)

Clearly this is in the form of Eq. 22, with the average sidelobe level

Psi, = Z Z"p [kAn (Vp + VP+ 1 ) - Vp Vp+I - E k 2 (An) 2  (26)
p n(p)n

9



2.2.3 METHOD 3

The probabilities for Method 3 have been defined in Eq. (7) and (8). Again, the ensemble averaged
power pattern is given by E(O, 0)2 shown in Eq. (15). The major difference between Method 3 averaging
and the others is that now one has to split the sum over n into two parts, namely,

{Fn) 2 = E (Fn 1 ) 2 + Z (Fn2) 2  (27)
n (1) (2)

where the (1) and (2) denote the two regions and options encountered in a typical interval (Pp-, pp).
Using Eqs. (6) and (7) for the probability densities, and Eq. (17) for the first moment, we obtain for

Region 1

I-III= k(Anl - Vp+l) k(Vp - An 1 ) (28)
1 Vp Vp Vp + VP- VP+l

For Region 2,

F2 = Vk(Vp_ I - An2) k(An2- Vp) (29)Fn = Vp - I - Vp +Vp- Ip_ - Vp (9

Next. we will need to consider the second moments. For Region (1),

(F.1) 2 = (Vp) 2 p(Fn = V P) + (Vp+ 1)2 P (Fnl =Vp +1) ; (30)

similarly, for Region (2):

(Fn 2 )2 = (Vp) 2 p (Fn 2 =Vp) + (VPI 2 P(Fn 2 =Vp- 1 ). (31)

Collecting contributions from all P intervals, namely, for the entire array, gives

IE(O.9) 2 = Z (F11)
2 + Z Z F expj(n-4'm) (32)

n n m n J
men

which again may be written as

Z Z (Fn) 2 + k 2 IEO(O,¢}I2- k 2 Z(An) 2  (33)
n1 n

Substituting the probability formulas into the equations simplifies the results to

I E(O,)I 2 = k 2 l Eo(O,)1 2 - k 2  (An) 2
n

+ k E {[An (Vp + Vp+1 ) - Vp Vp+I]

+ Z [An2 (Vp + Vp 1 ) - VP VpI]} (34)(2)

The average sidelobe level for Method 3 is thus given by

10



PSL---k 2 EA+ kE {JAt I (V + V ,)- Vp % 1

(1)

3. ARRAY PARAMETERS

The several expressions obtained above give average patterns that have two terms; the ideal
filled array pattern, and an average pattern independent of angular variation. At first glance it
appears from these expressions that one need only evaluate the average (far sidelobe) patterns to
compare the results of the three thinning methods; however, there are other array parameters that
depend upon the quantization and thinning. They are evaluated in this section and described in a
number of figures that follow. The chosen array is laid out on a rectangular grid, with inter-element
spacings of 0.5 X in each direction, the array radius for the pth annular ring being pp. Within each ring
there are a fixed number of elements, and the several methods differ in the way they perform the
statistical thinning and quantizing for each ring.

3.1 Normalized Input Power

If there are a total of N elements in the array with amplitudes Fn, then the total power into the
array, normalized to the input power into a uniformly illuminated filled array (Fn = 1) is:

E (Fn) 2
Pin =-1N (36)

Pin Is shown in Figures 9a, 1Oa, 11 a for the three methods.

3.2 Average Sidelobe Levels

The (ensemble) average sidelobe power levels PSL given in Eqs. (22), (28) and (37) should be
normalized to the ensemble average peak of the radiated signal. For convenience however, it has been
normalized to the peak of the specific designed array or (EFn)2 . The average sidelobe level normalized
to the beam peak is given below:

SL- PSL (37)(EZFn )2 (7

3.3 Array Directivity

The directivity of an array depends upon the element pattern, and does not admit to a closed
form expression in that it needs to include mutual coupling terms explicitly; otherwise one must
resort to an integration of the entire pattern. Skolnik uses a formula that neglects mutual coupling
(and assumes a unity gain element pattern) to obtain:

11



D = I ZF n 12 (38).,
El F,, 12

One interesting point about Eq. (38) is that it is not sensitive to the (ensemble) average sidelobe

level or the relative degree of thinning. For a single discrete level with each Fn either one or zero, the

directivity is just the number of non-zero biased elements, independent of the array size or degree of
thinning, even though the average sidelobe level may have increased to a degree where it should
dominate the directivity. Put another way. this formula says that an array of N elements, excited with
equal amplitudes, has the same gain for any array spacing, as long as the mutual coupling can be

neglected. As written, the formula implies a unity gain (omnidirectional) element pattern, ard so u,,IL

can argue that for a very sparse array the gain should be multiplied by 2 to account for hemispherical
radiation (while still neglecting coupling). When the array elements are closely spaced (say about
0.5 X) then clearly the array directivity for the uniformly excited filled array has to approach the area

directivity (4TA/V2 ), and one can show this as being consistent with Eq. (38) only if an element
directivity of n is assumed to multiply Eq. (38).

One can, in fact, show that if the element patterns of an array are identical (no end effects) then

the array directivity can be written

D = De FnI2 (3
E I FnI12

and the only problem with the above formula is that the element pattern De varies between -A for a
filled array lattice (with unexcited elements terminated) and 2 for an array with hemispherical

element patterns.
In the present study, we wish to address several cases in which the array is nearly filled, and

have introduced an expression for the average directivity of a statistically thinned array radiating

into a half-space. For all three methods the ensemble average pattern of the array takes the form:

= k 2 IEo(e.)l2 + PSL (40)

where the E0o(0, 0)1 2 is the ideal pattern of the tapered, filled array. The directivity of an antenna
radiating into a half-space is given by

D 4n Pmax (41)

|P(0) di2

where Pmui i s the power density k2 IEoIma at the beam peak, Q is the solid angle subtended in the upper

half-space, and d D = sin 0 d Od 4.
The average directivity in this case is:

4n 1/ (42)

2 jPsf/ k-2 Do SL
fk Eo(0, ) 2 d+ p- d +

for the sidelobe level SL = Psi/Piax and Do is the directivity of the ideal pattern.
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Eq. (42) shows that the average directivity depends on the ideal pattern directivity and the
average sidelobe level. When the average sidelobe level approaches zero, as for the filled ideal aperture
taper, the directivity tends to the correct limit [of 47r(A/X 2eap where Eap is the aperture efficiency of the
chosen distribution (in this case the circular aperture Taylor distribution). When the average
sidelobes are at the isotropic level, the directivity is reduced by about 1.8 dB (SL = l/Do). For very high
average sidelobes, the directivity approaches 2/SL above the sidelobe level, which is the case when
virtually all the power is in the average sidelobes and the radiation is contained in a half-space.
Notice that the thinning constant k does not enter explicitly in this formula, but is included in a

sidelobe level.
The expression (42) is not exact, for it implies an omnidirectional (half-space) element pattern

applied to the integration of the average sidelobe power in the dominator of Eq. (41), and so neglects
element pattern changes due to coupling. If it is assumed that the array elements are closely spaced, a
cos 0 element pattern might be assumed to modify the average sidelobe power integral. That would
lead to a factor of 1/4 multiplying the term SL for this case of very little thinning. However, in that
limit the average sidelobes are very low and the directivity very nearly the ideal (so it doesn't matter
what element pattern is used). Alternatively, when the array is highly thinned, the element pattern is
more nearly omnidirectional (in the hemisphere), and expression (42) should then be a good
approximation. The validity of it was tested by integrating the directivity formula (41) assuming 0
symmetry, for several cases as noted on the figures.

3.4 Normalized EIRP (Effective Isotropic Radiated Power)

The product of normalized input power and array (average) gain is an Effective Isotropic
Radiated Power (or EIRP). The EIRP is one of the primary measures of the antenna system, as it
produces the power density at the target (or receiver). For a lossless antenna system the directivity and

gain are equal and,

EIRP = D Pin (43)

4. ARRAY CALCULATIONS AND RESULTS

4.1 Array Pattern Calculations

The array factor for a circular aperture array with elements located on a rectangular grid is:
E(0,¢) = K Z E Fmn exp (J(2n/.) [md, (u - uO) + ndy (v -vo))

for

u = sin 0 cos 0; uo = sin 00 cos 4b

v = sin 0 sin 4; vo = sin 00 sin 0o (44)

for m and n within the circular planar region as shown in Figure 1, and elements centered at the
locations (xm, yn) = (mdx, ndy).

The constants Fnn are real and are determined from the statistical algorithms given in previous
sections. The constant K is chosen to produce max F(0, 4) = 1; namely

13



K = 1 /(Z Z. I Finn! (45)

Since the array investigated in this paper contained several thousand elements, the circular Taylor
amplitude distribution [Ref 51 (characterized by the parameter Ri) had to be sampled thousands of timc., It
the nodes of a rectangular grid locating the current elements. To speed the process of evaluating the
Taylor function, we sampled it at 19 positions across its radius and used a cubic spline code for rald
interpolation at the grid radii, r (xm. Yn). leading to significant reductions in program execution time.

The Taylor Illumination being emulated was always chosen with H as a large as possible while
maintaining monotonically decreasing current distributions from the origin. This selection leads to
the highest aperture efficiency and narrowest beamwidth subject to given sidelobe criteria while
maintaining realistic taper illuminations. The selected values of N accompanied by their compud
aperture efficiencies are given below:

Sidelobe Level (dB) n Efficiency

-30 5 0.8623
-35 6 0.7880
-40 7 0.7186
-45 9 0.6620
-50 11 0.6106
-55 13 0.5651
-60 15 0.5251
-65 18 0.4909
-70 21 0.4603
-75 23 0.4325

These efficiencies were calculated from Hansen 6 using

= 1 + ii Fn J 2 ( n) (46)

where the gn are the zeros of JI(ntp).
These efficiencies were used in the computation of directivity for the Ideal pattern using:

4nA
Do - X2 (47)

The pattern calculations for a filled, sampled aperture of this size are very nearly identical to
those of the continuous aperture with the Taylor taper and so exhibit sidelobes at the design level.

4.2 The Design Process

Since the objective is to apply statistical thinning methods to a sampled, step-wise continuous
aperture illumination, the following question arises: What amplitudc lcvcls (Vp) and radii (pp) are to
be assigned to the steps? Ideally, according to some criteria, the best (Vp, pp) is determined and the

6. Hansen, R.C. (1983) The Handbook of Antenna Design, Vol 2, Chapter 10. pp. 157, Rudge et. al.
(Editors), Peter Peregrinius Ltd.
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array is thinned, simultaneously. The inherent difficulties of global optimization in this context

leads us to the (suboptimal) design scheme described below. In it, the best (pp) is determined first, and

then the array is thinned.

We assume that by approximating the ideal taper with the staircase function shown in Figure Ic.

Taylor power pattern features will emerge as the number of steps (P) increases indefinitely. To choose

the "best" power pattern for a small number (P) of steps we proceed as follows:
1. N sets of randomly generated pp are created:

Corresponding sets of VP are obtained by evaluating the Taylor taper at the pp:
3. The power patterns for all N staircase apodizations are calculated:

4. The interval containing the first few Taylor sidelobes (in each power pattern) is sampled and

the number of ordinates (Q) exceeding the design sidelobe level (SLL) is counted: and finally.
5. The staircase parameters (pp,Vp) yielding the smallest Q is deemed the best for the subsequent

thinning operations.

Typically, N = 200 configurations were considered.

The power patterns required in Step 3 are easily calculated using the two-dimensional Fourier

transform over the circular aperture with constant illumination in each ring. By virtue of the
rotational symmetry, one is led to the evaluation of a finite Hankel transform for each ring. For P

steps in the staircase, the far-field amplitude distribution becomes
Fs(sin 0) = C E[Vp - Vp+ I ] (pp)J2 {J(2npP sin 0)) (48)

2npp sin 0

with C a normalization and pp= rp/X . VP+ I = 0. F.2 gives the required power pattern.

Some of the best patterns, obtained for various specifications of desired sidelobe level, were

those for which the radii varied as

pp = pAp p = 1,2,3...

for Methods I and 2. For Method 3, no simple relationship governing the radii could be inferred.
Having obtained the implied pp, the three algorithms were run to evaluate the patterns as well as

to determine how the basic parameters - gain, average sidelobe level and normalized EIRP - varied
with method. The results are summarized in Figures 9 through 14,

4.3 Array Dimensions and Generalizations

In nearly all cases the data was taken for the following array dimensions:

Array Diameter: 514
Element Spacing: 0.5 % (square grid)

No. of Elements in Filled Array: 7845

Design Sidelobe Level (dB): -30 to -75

Allhoigh most data was collected for only one array. it is possible to infer the average parameters of

other large arrays. It is shown in the Appendix that for a large array with a given taper, the

normalized sidelobe level varies as 1/N, where N is the total number of array elements. The array

directivity varies directly with N. This means that the product N SL and the quotient D/N are

15



constwLts, independent of array size, once the arrays are sufficiently large. For this reason the curn cs
in Figures 9 through 14 are generalized with ordinates on the left that include the array element count
N, while the ordinates at the right of each figure are the actual computed data. The ordinates of the

sidelobe curves are given a normalized sidelobe level that is the product of N times the sidelobe ratio.

10 log1 o SL,,r, = 10 loglo SL + 10 log1 oN

The ordinate of the normalized EIRP curve is:

10 loglo Dnom = 10 log, 0 D - 10 logl 0 N

The ordinate of the normalized EIRP curve is:

10 loglo (EIRPnormn) = 10 logl0 EIRPwatts - 20 logIoN

Since N was 7845 elements, the parameter 10 log N is + 39 dB.

4.4 Discussion of Results

Figure 4a shows the power pattern resulting from a discrete array of elements located at the
nodes of a rectangular sampling grid (xm,ym: A, = Ay = 0.52) within the circular aperture. The grid

samples a -50dB Taylor taper, with amplitude A (rmn) for

F2 2(rin = Xm + Yn );

the pattern Is clearly a good approximation to that arising from the unsampled A(r).
Figure 4b shows the pattern of a filled array with three discrete amplitude levels used to

approximate a -50dB Taylor illumination (see Figure 1c). The amplitude levels (w) and quantization
step radii (p) are shown in this Figure, as well as in those that follow. Since the array is not thinned

there are some relatively high sidelobes, but the annular distribution of the discrete amplitude levels
tends to minimize grating lobes. The goal of this study is to improve this and similar patterns by

utilizing various statistical thinning procedures in addition to the discrete level approximation to the

taper.
Figure 5a shows the result of thinning the array using the same excitation amplitude at all

elements and statistically thinning the array (as done by Skolnik) to match the -50 dB Taylor taper
illumination. Clearly the pattern has the correct beam width, but has many sidelobes above the -35dB
level and average sidelobes at -37.5 dB. The pattern directivity is 36.2 dB. The degree of thinning is

indicated in Figure 5b, which shows a continuous grading of elements removed to approximate the

desired density taper. In this figure the dashed lines indicate elements that are not excited. Notice
that the attempt to match an exceedingly low sidelobe taper has led to very inefficient use of the

aperture and to high average sidelobes. This is a rather extreme example, because if the array had been
larger (by a factor of 10 for example) then the average sidelobes in Figure 5a would be reduced another

10 dB. As shown by Skolnik, the average sidelobe level is approximately 1/N for highly thinned

arrays. Figures 6. 7. and 8 show the same example with three steps of amplitude illumination. For
comparison, recall that Figure 4b shows the optimized three-step-pattern without thinning and
indicates peak sidelobes in the neighborhood of -27 dB. In 7b and 8b dashed lines indicate that the
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element is excited at the level of the next (lower) step, and in 8b the plus signs indicate that the
previous (higher) step level is used.

Figure 6a, 7a, and 8a show the results of applying the three algorithms to smooth the average
amplitude illuminations. Apparently methods 2 and 3 have very similar results, with average
sidelobe levels between -45 (Method 3) and -47 dB (Method 2). Method 1 has, as expected, the highest
sidelobes, at -42.5 dB but these are substantially suppressed compared to the case of a single step
(thinning with uniform amplitude) (Figure 5a). Peak sidelobes along the cut 0 = 0 range between -33 dB
(Method 1) to -38 dB (Method 2).

Figures 6b, 7b, 8b show the state of the array aperture for the three methods. Figures 9 through 11
compare the results from :..he 3 synthesis approaches for a range of design sidelobe levels, and revt.al
some interesting differences among the methods. Figure 12 gives the directivity and selected has a
function of design sidelobe level. Figures 9, 10, and 11 each have three parts, and show normalized
input power, directivity and average sidelobe level as a function of design sidelobe level for the three
methods. Each figure shows data for one, two, four and six steps.

For one step, all of the data are the same: the three methods are identical, and equivalent to the
Skolnik technique. As more steps are added, the three approaches become characteristically
different. In almost all cases the input power and directivity decrease with decreased design sidelobes
(as one would expect because of increased thinning) and the average sidelobe level increases for the
same reason.

Figure 9 shows the directivity of an array synthesized by Method 1. Several additional data
points have been added to this figure to compare the several directivity formulas Eq. (38) and Eq. (41)
with the exact gain as computed by numerically performing the integral in Eq. (41). Two cases,
representing design sidelobes of -30 dB and -60 dB were investigated for the array with a single step
height, and a third case was evaluated for design sidelobes of -60 dB and six steps. The exact data are
given by the circles, which are shown to be less than 0.2 dB from the plotted results using the formula
(42). The results of using Eq. (39) are denoted by an asterisk. For one step and assuming element

directivity of nt, Eq. (39) leads to directivities between 0.9 and 1.0 dB higher than the exact number. For
the case with one step, identical accuracies are obtained using Methods 1 and 2. For an array with six
steps and Method 1 thinning, the results are closer, and here the results of using the formula (41) are
within 0.3 dB of the correct value. Figure 10, computed using Method 2 thinning, shows only the
integrated value (at -60 dB design sidelobe level and six steps). In this case all three methods yield
results within 0.05 dB of each other. These results strongly support the use of Eq. (42), which is used

throughout Figures 9, 10, and 11.

For Method 1 (Thinning), the average sidelobe reduction due to increasing the number of steps
from one to six is about 8 dB, independent of the design sidelobe level. This is less true of Methods 2
and 3, both of which exhibit a wider spread of average sidelobe level as a function of the number of
steps.

There is an interesting anomaly in the Method 3 data for two steps. As shown in Figure 11, the
two-steps curve appears quite different from the curves for 1, 4, and 6 steps. The reason is that for
Method 3 one must select both the step radius Pn and the step height VP at each radius to define the

stepped distribution. The method chosen for determining step height was to have the taper amplitude
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at the step radius equal the average value of two adjacent levels, namely,1

VP - A(pp) = A(pp) - Vpl . (49)

Selection of this condition was quite arbitrary, and works when there are enough steps. However,
when there were only two steps and with low sidelobe aperture illuminations, this choice resulted in
selection of a second step V2 that would have gone below zero for design sidelobe levels less than
-50 dB. To avoid this outcome, the height V2 was set to a very small positive number. The net result,
shown in Figure 11, is for the two step data of Method 3 to become essentially equal to the one-step
data when the sidelobes become lower than -50 dB. This result occurs only for the two-step case, and
indicates that one must exercise some care in choosing the step-heights for Method 3. Figure 12 shows
the normalized directivity of the ideal Taylor pattern and is to be compared with Figures 9, 10 and 11.
Note that several of the six-step configurations for Methods 2 and 3 have nearly the maximum
available directivity. Figure 12 also shows the selected Ti.

Figures 13a and 13b give additional perspective on array design. The figures show the variation
of normalized EIRP with design sidelobe level for Methods I and 2 with one to six steps. Method 3
results, though not shown, are virtually the same as for Method 2. The remarkable fact illustrated is
the near equality of EIRP for all methods at any given sidelobe level. The net spread of these curves is
approximately 1 dB in all cases. So, in terms of EIRP, only the design sidelobe level is important, not
the method used or the number of quantization levels (especially for greater than one level).
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Figures 9c through 1 ic show average sidelobe levels as a function of the design sidelobe level for
various numbers of steps. The plotted sidelobe level parameter is [Avg sli dB -- 10 loglo N, and so the

data is invariant with the number of fih'ed array elements (once the array exceeds a minimum size)
However, it is meanilgess to select an iwumination to produce (near) design sidelobes lower than the

average sidelobe level, and so it is of interest to determine how large an array must be in order to

sustain any given near and far sidelobe level. A good estimate of this quantity is obtained by setting
the average sidelobe level equal to the design (peak) sidelobe level minus some margin. The offset, or
margin, accounts for the fact that the peak sidelobes of the random distribution may be significantly
above the statistical average level, and it is common practice to assume a margin of 10 to 20 dB
depending on the percentage of sidelobes allowed to exceed the peak sidelobe estimate.

Using the normalized sidelobe data from Figures 9 and 10, Figures 14a and 14b are obtained by

setting

SLdB = SLnorm - 10 logi 0 N

= SLdcsg n - MargindB (50)

for Margin dB a positive number. Solving for N yields:

10 loglo N = SLnorm - SLd,,1gn + MargindB (51)

To give the required array size, the figures are plotted for Methods 1 and 2 with design sidelobes (the

peak Taylor sidelobes) set to values between -30 and -75 dB, and with Margin dB set to zero. Thus,
Figure 14 gives the minimum array size required for the average sidelobe level to equal the design
near-sidelobe level. Note that for P = 1 (one level) these cases reduce to the Skolnik et al result, and as

shown in the reference, the average sidelobe level should be approximately equal to the number N of
elements remaining in the highly thinned array. Figure 14 confirms the results for the arrays studied
herein. The figure can be used for a non-zero margin by simply increasing N by the value of the desired
margin, for example, by the factor 10 for each desired 10 dB of margin.

5. CONCLUSION

This report has investigated the use of statistical thinning and quantized element weights to
produce low sidelobe patterns using large circular array apertures. The major results of the analysis
show that by using either of several thinning algorithms it is possible to obtain substantial sidelobe
reduction by a combination of statistical thinning and the use of discrete amplitude quantization.
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Appendix

Variation of Average Sidelobe Level with Element Count (k = I Case)

It is of interest to scale the diameter of the aperture and, correspondingly, the radial dependence
of the staircase function and the taper, while retaining the same X/2 model mesh spacing. To effect
this scaling, let

D -cD,

rp crp,

A (r) --> A (cr), (A l)

dx = dy 1/2 (X./2 spacing),

and

(VP : p = 1, 2 .... P) remains unchanged.

As noted previously, the normalized average sidelobe level for Method 2 is given by

P 2

FL p Yl np {An (Vp + VP+ 1) - VP, VP+l} - AnS=PSL -p= 1 n(p) n(A2

SL=Pmax - (A 2)
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The denominator is random, but even for "moderately large" arrays its ensemble average is nearly

that from a single spatial realization resulting from Method 2 thinning. Thus,

( Fn = ( 2 any sample (A3)
n n ' array realization

The first term in the numerator of SL is given by

Ps,-- I Z An (vp + vP+,)- VP vp ,1 (A 4)
p=l n(p) L

Taking account of the radial dependance of An . and interpreting S1 dxdy as an area calculation using a

two-dimensional rectangular quadrature. then transforming to polar coordinates yields

21c a

S =(dxdy[ -  f d4 fdrr{A(r) v(r)--(r)1

0 0

1

2- a 2 f dp {A(p) v(p) - o(p) } (A 5)
0

P2

-N'2 .2nt =E {(v + v+ 1 ) f dp pA(p - 2 ~ PP P
Pp-1

N' 2 Xp

, a

where N' = a Po " 0 and P1 = 1. The integral of pA(p) can be evaluated in closed form as follows.

Substituting

i-1
A(p) = E Di JO ({Lmp) (A 6)

m=0

into the integral yields

Pp

f dp pA(p)= E A PpJI (7JLmPp)- Pp-I JI (7tm Pp-1 0
m=0 m't

Pp-I

rhls completes the determLnation of . and the term S1.

As shown above, the numerator of SL can be expressed as

.pN1 2 _ E A ,  (A7)

3n
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where

Xp = X.p (pp.' Yi, P,..

but not N'. We are left with the evaluation of

2 and F )2 (A8)

* n ~n

For a circular Taylor taper,

Ar) = I Dm Jo ( XRma (A9)
m=O

where 0 : r < a = N' dx . Letting, P = r/a and approximating the area under A2 (r) with a rectangular

quadrature. one obtains

2n a

ft drr A 2 (r) dxdy 7 An2 (A10)

0 0 
n

which reduces to

2 2I 2 2cXn 2it a 2  5". m J dp p 0 (':PmP)An - dx dy a2 Dm f Jo
n m=O

by virtue of orthogonality. The integral is readily evaluated in closed form. (See Van Bladel. p. 514,
(23)). leading to

2 -'12 2 2An =N2 Dm Jo(0lm

n m=0

= N'2 C 2 . (A 11)

Thus far, one obtains
XpN ' 2 _ C2 N

2

SL = - (A 12)

n

To evaluate the denominator, we note that
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F. = Z F'

=Z Fn Fn '
n, n

= Z F n F n' + Fn2

n, n n
n* n

E Fn Fn' + Y, Fn 2  (A13)
n, n n
nn

= . AnAn' + p {An (V p + Vp+ 1 ) Vp Vp+I}
n, n, p }LpJ
n* n

= Z ,A n A n '+ pN 2

n, n,

E AnAn' AXpN2 + p2
n. n

r. n~ ,  An+X .pN '

all, n
n, n

= numerator of SL

It follows that

SL=

Z A n A n ' (A 14)
al l,, + C

Next, we must look closely at the sum

S2= E. An An', (A 15)
all,

a, n

and it will be useful to revert back to the original 2-dimensional array notation, namely,

An A -A III

A n' - > A n', i', (A 16)

The sum may now be written as
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S 2 = Y" Anm An1'.,r (A 17)
all
n. nM M,

F," Y Y. An,11An+i,m+'.
n m I i'

which is a 2-dimensional autocorrelation function.
Because of the circular symmetry of the Taylor function and the circular aperture, it Is useful to

convert the expansion to polar form. It is clear that the 2-dimensional displacement variables, I and
I' must also be transformed to polar form. The "area" is, therefore, given by

2n a 2n a

dx dy S2  dO dTr do drrA(r) A(r+T) (A18)x dy f f f f
0 0 0 0

The change to dimensionless variables

p=r/a and u=t/a

yields

1 1

(dx dy) 2 S2- (27r) 2 (N' dx)4  J di) fdpp A(p)A(p+) (A19)

0 0

= (27r) 2 (N' dx) 4 I.

Since dx = dy has been assumed, and a = N' dx. S2 may be written as:

S 2 =4r21 N' 4  (A20)

Inserting into the expression for SL, we are led to

SL= I , = 1 1 2  (A21)

+ 4 N21 + CS N'

1si ,snce N = rN' 2

1+ - )N
p113- C2)

Numerical studies show that to an excellent approximation

SL- of A. (A2)

where N is total number of nodes within (and on) the circular aperture.

The evaluation of the integral, I. can be accomplished efficiently and accurately by numerical
means. Both the inner and outer integrals lend themselves well to low-order Gauss quadrature cf
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moments. Furthermore, A(p) can be rapidly evaluated using the same cubic snllne code that was

discussed earlier for the "thinning" code. It should be apparent that C, (I. %,P. C2 ) needs to be determined
only when p, - iA p is of interest. The results can be applied to arbitrary aperture diameters as long as
pj= iAp.
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